Documentation of MATLAB functions, scripts and data sets

Florian Nisbach

26th September 2006

Contents

1	Cha	nged Functions	2
	1.1	cumprobdist ng.m	2
	1.2	degree_stw.m	2
	1.3	simulateTimeWindows.m	3
	1.4		3
2	Cre	ated Functions	3
	2.1	connectionHyp.m	3
	2.2	corrtest.m	4
	2.3	degree_stat.m	4
	2.4	degrees.m	5
	2.5	distri.m	õ
	2.6	fitplot.m	õ
	2.7	plot_chresults.m	3
	2.8	plot_results.m	6
	2.9	prepareParmVector.m	3
	2.10	ptimepoly.m	3
	2.11	randomgraph_symm.m	7
	2.12	rgcalc.m	7
	2.13	sigma.m	7
	2.14	sigma.m	7
3	Scri	pts 8	3
	3.1	calcswfactors.m	3
	3.2	degree_script.m	3
	3.3	degree script.m	3

		script_connectionHyp.m
	3.5	script_connectionHyp.m
4	Ger	nerated Datasets
	4.1	data_connectionHyp2006_08_26.mat
	4.2	quantiles_data_2006_09_04.mat
	4.3	quantiles_data_2006_09_18.mat
	4.4	SW_08-15 -dataset.mat
	4.5	SW_08-18-dataset.mat
	4.6	timewin_data_08_15.mat
	4.7	timewin data 08 18.mat

1 Changed Functions

1.1 cumprobdist ng.m

The graphical output was removed from the original cumprobdist.m to include it into batch calculations.

1.2 degree_stw.m

```
% function [quantiles,dd_r,dd_lambda,runtime] =
% degree_stw(nodes, windows,ParmVector);
% yet another version of simulateTimeWindows,
% which stores all percentiles
% of the degree distribution, as well as fit
% data for testing for power law
% distribution.
```

% based on timewin3d by Marcus Kaiser

% Author: Florian Nisbach

% Date of creation: 2006-08 % Last change: 2006-09-14

Used by degree_stat.m.

1.3 simulateTimeWindows.m

```
% [dd_r,dd_lambda,wiring_r,wiring_lambda,wiring_total,CC,ASP,Edges] =
% simulateTimeWindows(nodes, windows, ParmVector)
% Part of a modularized version of timewin3d, to do statistics...
% Original Author: Marcus Kaiser
% Changed by: Florian Nisbach
% Last change: 2006-08-18
```

Adapted version of timewin-3d, with graphical output removed and a few bugfixes

1.4 timewin3d.m

```
% function [matrix,position,matrixc,d,cl,shp] =
% timewin3d(nodes,windows);
% Program: timewinspatialgrowth(param) - spatial network growth
% using time windows and different node classes
% (graph coloring)
% Author: Marcus Kaiser
% International University Bremen, Germany
% Changed by: Florian Nisbach
% Date: 31 Jan 2006 (14 Jun 2003)
% Last change: 2006-08-17
```

The time window functions were changed to the polynomial based ones. Some errors were removed.

2 Created Functions

2.1 connectionHyp.m

```
% function [EdgeDist, InterEdgeDist] =
% connectionHyp(nodestep,numsteps, windows, ParmVector);
```

```
% Stores the timed distribution of total edges % and inter-class edges.
```

% nodestep is the stepwidth, numsteps is the number of steps

% (so that NODES = nodestep*numsteps)

% windows is the number of time windows

% ParmVector is a suitable parameter vector for the time

% window functions

% Author: Florian Nisbach

% Date of creation: 2006-08
% Last change: 2006-08-25

This function, based on timewin-3d.m, saves the development of edges over the runtime.

2.2 corrtest.m

```
function corrtest(A_Data, axis, tw_type)
% function corrtest(A_Data, axis, tw_type)
% tests the correlation of A_Data (A_ASP and so on, as given
% from stat_script)
% axis is one of 'nodes', 'windows', 'integral'
% tw_type is one of 'all', 'theeonly', 'nothree'
% Author: Florian Nisbach
% Date of creation: 2006-09-13
% Last change: 2006-09-13
```

The input is a 3-dimensional data array. One axis is selected, and the mean over the other two is calculated, and it can be specified if the three-time-window case shall be included, omitted of dealt with exclusively. The correlation coefficient of the values over the axis is calculated, as well as the r^2 values of the sigificance for the following function fits: Polynomials of degrees 1 to 4; exponential; Power law; Power law plus a constant. The data points are plotted.

2.3 degree_stat.m

% function out = degree_stat(nodes, windows, Integral, numruns)

% runs degree_stw several times and to calculate mean

% and estimate for standard deviation.

% Author: Florian Nisbach

% Date of creation: 2006-08
% Last change: 2006-09-14

The output is a record, used by degree_script.m.

2.4 degrees.m

```
% dl = degrees(matrix)
% list of degree for each node
% (degree distribution)
% Original version: Marcus Kaiser
% Author (rewrite): Florian Nisbach
% Date of creation: 2006-08
% Last change: 2006-09-14
```

Original version produced errors, as the adjacency matrices generated by timewin_3d.m use the values of the non-zero elements to store node classes. Complete rewrite, also with counting the diagonal elements twice error fixed.

2.5 distri.m

```
% function dist=distri(windows,nodes,alpha,A)
% pics out a distribution corresponding to the
% given parameter vector from A, which should be
% the 4D percentiles array generated by
% degree_script.m
% Author: Florian Nisbach
% Date of creation: 2006-09
% Last change: 2006-09-11
```

2.6 fitplot.m

```
% function fitplot(A_Data, axis, tw_type, model)
% plots a fitted function through collapsed A_Data (see corrtest)
% axis is one of 'nodes', 'windows', 'integral'
% tw_type is one of 'all', 'theeonly', 'nothree'
% model is fit model, see cflibhelp for help
% Author: Florian Nisbach
% Date of creation: 2006-09-13
% Last change: 2006-09-13
```

Plots the actual fitted function through the data points. Second half of the toolkit provided together with correst.m.

2.7 plot chresults.m

% function plot_chresults(A,tit)

% plot results for the connection hypothesis script

% Author: Florian Nisbach

% Date of creation: 2006-09
% Last change: 2006-09-14

Plots the results of the timed edges growth array as a nice colorful slice plot. See plot_results.m.

2.8 plot results.m

% function plot_results(WINDOWLIST,NODESLIST,INTLIST,A,tit)

% plot results for stat_script and degree_script

% Author: Florian Nisbach

% Date of creation: 2006-08
% Last change: 2006-09-14

Plots the results as a nice colorful slice plot.

2.9 prepareParmVector.m

% function musigma = prepareParmVector(windows, Integral);

% calculates the mu and sigma vector for the time window functions

% (TWF), taking the number of windows and the desired value of the

% integral over the TWFs over the interval [0,1].

% Author: Florian Nisbach

% Date of creation: 2006-08 % Last change: 2006-08-14

Used in TWstat.m and others. This was put in an extra function to save calculation time, because it used to be slow.

2.10 ptimepoly.m

% function p = ptimepoly(x,mu,sigma)

% This function calculates the polynomial based time

% window functions, depending on mu and sigma

% Author: Florian Nisbach

% Date of creation: 2006-08
% Last change: 2006-08-15

2.11 randomgraph symm.m

- % function G = randomgraph_symm(n,e)
- % generates the adjacency matrix of a symmetric random
- % graph with n nodes and e edges
- % Author: Florian Nisbach
- % Date of creation: 2006-08
 % Last change: 2006-08-17

2.12 rgcalc.m

- % function [ASP, CC] = rgcalc(nodes, edges, runs)
- % calculates the average ASP and the CC of a random graph
- % generated with randomgraph_symm
- % Author: Florian Nisbach
- % Date of creation: 2006-08
- % Last change: 2006-08-17

2.13 sigma.m

- % function s = sigma(mu, I)
- % compute the exponent sigma for the time window function ptimepoly
- % NOTE: mu (x-value of the peak) and I (desired integral) must be
- % between 0 and 1!
- % Author: Florian Nisbach
- % Date of creation: 2006-08
 % Last change: 2006-08-14

The computations are done numerically. For integration, the built-in function quadv is used. For finding the root, an interval subdivision algorithm is used, for the sake of numerical stability.

2.14 sigma.m

- % function out = TWstat(nodes, windows, Integral, numruns)
- % runs simulateTimeWindows several times, calculating the mean and
- % estimated standard deviations for the measured values. The parameter
- % vector for the time window functions used is pre-calculated.
- % The output is stored in an array.
- % Author: Florian Nisbach
- % Date of creation: 2006-08
- % Last change: 2006-08-18

Used by stat_script.m.

3 Scripts

3.1 calcswfactors.m

% Calculate SW-Factors of the dataset
% Author: Florian Nisbach

% Date of creation: 2006-08-23 % Last change: 2006-08-23

This script was used to calculate ASP_{gen}/ASP_{rand} and CC_{gen}/CC_{rand} with a pre-calculated dataset generated by stat_script.m

3.2 degree script.m

% script to run statistics using degree_stat

% the percentile data is stored in the 4D array A_quantiles

% r and lambda of degree distribution is stored,

% as well as runtime

% Author: Florian Nisbach

% Date of creation: 2006-08
% Last change: 2006-09-14

3.3 degree_script.m

% Plots the polynomial based time window functions

% used in all simulations.

% Author: Florian Nisbach

% Date of creation: 2006-08
% Last change: 2006-09-15

3.4 script_connectionHyp.m

% this script was used to calculate the edges development over

 $\mbox{\ensuremath{\mbox{\%}}}$ the time of network generation.

% Author: Florian Nisbach

% Date of creation: 2006-08
% Last change: 2006-08-25

Uses connectionHyp.m.

3.5 script connectionHyp.m

% script to run statistics using TWstat

% Author: Florian Nisbach

% Date of creation: 2006-08 % Last change: 2006-08-18

This was used to generate the main dataset.

4 Generated Datasets

$4.1 \quad data_connectionHyp2006_08_26.mat$

Dataset generated by script_connectionHyp.m.

4.2 quantiles_data_2006_09_04.mat

Now obsolete dataset generated by degree_script.m, because degrees.m was still faulty then.

4.3 quantiles_data_2006_09_18.mat

Corrected version of the above.

4.4 SW 08-15-dataset.mat

Old version of the small world factors arrays. Small parameter set, and some errors.

$4.5 \quad SW_08-18-dataset.mat$

New version of the above.

4.6 timewin data 08 15.mat

Old version of the main data set with small parameter set.

4.7 timewin_data_08_18.mat

New version of the above, with larger parameter set.